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ABSTRACT

Multiarm flexible robots with dexterous end-effectors are currently being

considered in such tasks as satellite retrieval, servicing and repair _%_e_.ea

two-phase problem can be identified: Phase I, robot positioning in space,
Phase II, object retrieval. In this article we only consider some issues in

Phase I regarding modelling and control strategies for a robotic system

comprised of a long flexible arm and a rigid three-link end-effector. The
control objective is to maintain the last (rigid) link stationary in space in

the presence of an additive disturbance caused by the flexible energy in the

first link after a positioning maneuver has been accomplished. In our
formulation, several cunfiguration strategies can be considered, and optimal

decentralized servocumpensators can be designed. Preliminary computer
simulations are included for a simple proportional controller to illustrate

the approach.

One of the requirements of current and future robot manipulators is that

they be lightweight to permit rapid operation at a minimum energy cost. A

typical application involves the (perhaps rapid) slewing of the shuttle arm in

a satellite holding and retrieval task. Numerous studies have been done to

find adequate controllers for robots consisting of one or more flexible/rigid

links, including linear and nonlinear feedback, adaptive techniques, feed

forward control, servitors, and optimal control [1-6].

One robot configuration that has not received attention is that of a

long, lightweight (flexible) first link, followed by a dexterous end-effector

consisting of rigid links numbered 2 onwards. The problem considered is that

of keeping the end-effector fixed in space in orientation after a slew

operation, which has been accomplished using time.optimal or minimal energy
constraints. Due to the inherent flexibility of link i, its tip will vibrate

causing disturbances that affect (rigid) links 2 through n. The question we

are addressing is twofold: i) Can joints 2 through n move to keep link n
fixed? What are the kinematic configurations that can a_lish this

vibration compensation?, and 2) What control strategy must be followed by

joints 2 on, for this compensation to be effective?

In answering these questions, we may consider the last link fixed and

look at the reverse problem for a fictitious rigid manipulator comprised of
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links n - 1 through 2 (the last link is considered the base). THUS, this is

now a prQblem of analyzing the space that the tip of the fictitious rigid

manipulator can move, and matching it to the vibrations of a single link

manipulator. A number of different solutions and configurations can be

considered depending on the type of joints that the rigid manipulator has.

The manipulator considered here is shown in Figure i. The system consists of
four links labeled L1 through L4. The first link is very long and flexible

(LI >> L2, L3, L4), and the last three links represent a rigid robot arm with
an end-effector. The hub joint is revolute to allow planar or single-axis

slewing maneuvers; the second joint is also revolute, the third joint is both

revolute and prismatic, and the fourth joint is revolute.

The following assumptions/simplifications are made:

* The flexible disturbance is additive.

* The end-effector robot can be modelled as a lumped point mass.

The modelling restriction my be relaxed in a later study and a more detailed

model can be obtained [7-9].

Definition i:

The rigid configuration is the orientation that the arm and end-effector

would assume if the arm were rigid.

The main goal of this paper is to solve the control problem of system
orientation about the rigid configuration in the presence of flexible distur-

bances. One particular configuration strategy is considered in the following
section.

77. A Cunfiguration Strategy

The problem formulated in the Introduction is now solved within the

framework of a particular configuration strategy. To that end, consider the

releqation of control effort to Joint J2 so that link L2 remains parallel to

the rigid configuration. We will label this strategy as the absolute flexi-

ble-to-rigid configuration strategy. Given this orientation constraint, our
task is to determine the appropriate control ccmmmmds for joints J2, J3, J4.

Figure 1 illustrates the rigid configuration which is also the "steady-
state" orientation after the flexible disturbance has disappeared. We attach

the coord_ts frames {i}, {2), {3}, and {4} to each of the links as shown in

the figure. Ref_ frame (0} is an inertial coordinate system. Using

these frames, a point IP 1 in {i}, for example, can be expressed in {2} as 2P 1

by the relation:

where the hcmogeneous frame transformation 2T is given by
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where 2Plorg is a vector that expresses the origin of {i} in frame (2 }.

Assume that a suitable rigid configuration has been determined with the

corresponding solution set

r r r r r ]901' _12' ($23 'x )' _34

where, as illustrated in Figure i, _i% is the angle between frame i and frame

j, and xr is the displacement of the _rismatic joint.

We next define "flexible coordinate frames" (IF}, {2F}, and {3F) which

coincide exactly with frames {i}, (2}, and {3}, respectively, once the

flexible disturbance has disappeared. We also define the flexibility pair (_,

YTIP) where _ is a small flexibility angle measured locally at the tip of link

L1 and YTIP is the corresponding local transverse displacement. Then,

r +_
_01 = _0,1F = _01

and for the configuration strategy under consideration,

r

_02 = _0,2F = _02

frcm which it follows that

r

912 = _I,2F = _12 - _" (I)

To determine the flexible displac_ml_ent x = x f of the prismatic joint, we

Qb__rve that

[]3FP4 = = x = 3F P
org 0 0 - 4R q

(2)

where = 3R 2R 1R

q YTIP

I A_N(_)
and $43 = _4,3F = _ + ATAN(_)

-_ + ATAN(_)

if p<0

if p > 0 and q < 0

if p > 0 and q > 0

(3)
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Finally, the angular set point of joint J3 is found to be

r r

_32 = @3F,2F = _32 - [_43 - _43 ]
(4)

Equations 1-4 are the solution to the regulation problem for this particular

configuration strategy. Note that the joint ooordinates can be found frcm the

following relations:

½
½
1

Y3

1

(5a)

(5b)

III. Simulaticr_

In this section we include some representative simulations that illus-

trate the results obtained thus far. For s_mplicity, we assume that all

motors are identical and can be modelled as shown in Figure 2.

8ref or__Xref

K

8 or x

_[ K 1

 sCs÷a i

Figure 2.

H(s) =

Motor Model

2
0)
o

s 2 + 2 _o s + 2

where 8 is the angle of a revolute joint and x is the linear displacement of a

prismatic joint. The gain K can be chosen so that a suitable response is

obtained. In the simulations we set the damping ratio _ = 0.707 and _o is a

design parameter. Tnis s_mple proportional controller is used to illustrate

the results and should be viewed only as a representative design. A procedure

to construct a suitable finite dimensional model of the slewing beam can be

found in [i0]. A slewing profile can be generated by applying a torque input

to the mcdel with hub rate and angle feedback [ii]. The physical parameters

used, structural modes and closed-loop modes are listed in Table i. We have

chosen the first eight modes to constitute a "truth" model for the flexible



beam. A typical simulation of hub angle 901 and tip position YTIP is shown in

Figure 3 for two and eight modes. Notice that no attempt is made to decrease
the structural vibrations and a "poor" slewing profile is deliberately

generated. Table 2 lists the initial and final rigid system configurations.

Equations 1-4 are used to compute the required motor set-points based on
a reduced order .model of the beam that retains two or four modes. The

resulting joint angles and the true hub angle and tip position (from the 8-
mode model) are then used to coni0ute the position of the links (see Equation

5). One representative simulation is given in Figure 4. An expanded view of
the error in the coordinates of the last link is shown in Figure 5. There, we

observe that the y-coordinate of the tip (Y5) has a maximum error of about 2

cm. Table 3 compiles the results for several simulation runs and different
choices of motor bandwidth and number of modes used in the reduced-order model

of the flexible link. Increasing the motor's bandwidth reduces the overall

regulation error to some extent. The major contribution to the error is seen
to be the inexact account of the total deviation of link L1 from its rigid

position. _nis is a consequence of employing a controller based on a reduced-
order model of the flexible beam.

IV. Ccnclusior_ and FUrther

We have presented a control strategy for a flexible manipulator with

rigid end-effector. Our preliminary results are promising, and current
research efforts include analysis of other configuration strategies, extension

to a similar robotic system with a three-dimensional workspace, coordination

of multiple robotic arms, and ±mplementation of an optimal decentralized

servitor [Ii, 12 ] for each motor for reference tracking and flexible

disturbance rejection.
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Table 1. Physical Link Parameters and Modes

Linkl

M dos

L 1 = 4.0m ; p = 0.4847 Kg/m ; I = 3.3339 x 10-11m 4

E = 6.8944 x 109 N/m 2 ; A = 1.5875 x 10-4m 2

Tip = 0.2

L5 = o.5 ; =

0 ; 0.0884 ; 0.2635 ; 0.4828 ; 0.8151

1.3090 ; 1.9535 ; 2.7426 ; 3.6846

Closed Loop Modes -1.7723 X 10 -4 ± j 0.1177 ; -6.4417 X 10 -3 ± j 0.7731

-6.2638 X 10 -2 ± j 2.2021 ; -5.1936 X i0 -I ± j 3.9712

-3.6426 X I0 -I ± j 5.2491 ; -7.4596 X 10 -2 ± j 8.2481

-2.6528 X 10 -2 ± j 12.281 ; -1.1691 X 10 -2 ± j 17.234

-7.4112 X 10 -3 ± j 23.152

Table 2.

901 912 923 x 934

55 45 -80 0.2 -30

25 20 -40 0.1 -20

Initial and Final Configurations

(gij in degrees ; x,y in meters)

x2 Y2 x3 Y3 x4 Y4 x5 Y5

2.29 3.27 2.21 3.77 2.39 3.84 2.59 3.81

3.63 1.69 3.98 2.04 4.08 2.05 4.27 2.00

Table 3. Error Range in Link 4 Displacement

* Time Interval = 15-30 sec

* First entry corresponds to 2 mode

controller

* Seoorgl entry co_nds to 4 mode

controller

I_4 Error Range (cm)

(Hz) x 4 Y4 x5 Y5

1

2

5

l0

3O

±3 ; 0,3.5 ±6 ; 0,7

±2.5 ; 0,2 ±4.5 ; 0,4

-3,2 ; 0,1.2 -4,6 ; 0,2.25

-3,2 ; 0,i -4,6 ; 0,2

-3,2 ; 0,i -4,6 ; 0,2

±3 ; 0,3.5

±2.5 ; 0,1.9

-3,2 ; 0,i.i

-3,2 ; 0,0.9

-3,2 ; 0,0.9

±6 ; 0,7

±5 ; 0,4

-4,6 ; 0,2.4

-4,6 ; 0,2.1

-4,6 ; 0,2.1
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Figure i. The Flexible Manipulator.
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